
Weight-decay induced phase transitions in multilayer neural networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 5003

(http://iopscience.iop.org/0305-4470/32/27/301)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/27
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 5003–5008. Printed in the UK PII: S0305-4470(99)01047-1

Weight-decay induced phase transitions in multilayer neural
networks

M Ahr, M Biehl and E Schl̈osser
Institut für Theoretische Physik, Julius-Maximilians-Universität Würzburg, Am Hubland,
D-97074 Ẅurzburg, Germany
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Abstract. We investigate layered neural networks with differentiable activation function and
student vectors without normalization constraint by means of equilibrium statistical physics. We
consider the learning of perfectly realizable rules and find that the length of student vectors becomes
infinite, unless a proper weight decay term is added to the energy. Then, the system undergoes
a first-order phase transition between states with very long student vectors and states where the
lengths are comparable to those of the teacher vectors. Additionally, in both configurations there
is a phase transition between a specialized and an unspecialized phase. An anti-specialized phase
with long student vectors exists in networks with a small number of hidden units.

Statistical physics has been applied successfully to the investigation of equilibrium states of
neural networks [1,2]. The by now standard analysis of off-line training from a fixed training
set is based on the interpretation of training as a stochastic process which leads to a well-defined
thermal equilibrium. Investigations of perceptrons [3–5] or committee machines [6–10] have
widely improved understanding of learning in neural networks. Meanwhile, these studies are
being extended to the more application relevant scenario of networks with continuous activation
function and output [11–13].

The soft-committee machine is a two-layered neural network which consists of a layer of
K hidden units, all of which are connected with the entireN -dimensional inputξ . The total
outputσ is proportional to the sum of outputs of all hidden units:

σ(ξ) = 1√
K

K∑
j=1

g(xj ) where xj = 1√
N
Jj · ξ (1)

where the weights of thej th hidden unit are represented by theN -dimensional vectorJ j . We
investigate learning of a perfectly matching rule parametrized by a teacher network of the same
architecture with outputτ and orthogonal vectorsBj , which we assume to have the length√
N . The transfer functiong(x) is taken to be a sigmoidal function, e.g. the error function.

Networks of this type have been studied in the limit of high temperature [11], the annealed
approximation [13], and by means of the replica formalism [12]. All these studies imposed the
simplifying condition that the order parametersQij = J i · J j/N are restricted to the value 1
for i = j , so the length of the student vectors is fixed to that of the teacher vectors. This system
shows a phase transition between an unspecialized configuration, where the student–teacher
overlaps,Rij = J i · Bj/N , are identical for alli, j and a specialized configuration where
Rii 6= Rij for i 6= j . However, constraining the student lengths implies significanta priori
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knowledge of the rule which is not available in practical applications. So, in this paper we
want to obtain first results for soft committee machines which determine student lengths in the
course of learning.

Learning is guided by the minimization of the training error

εt = 1

P

P∑
µ=1

1

2
(σ (ξ

µ
)− τ(ξ

µ
))2 (2)

whereP is the number of examples used for training. After training, the success of learning
can be quantified by an average of the quadratic error measure over the distribution of possible
inputs, the so-called generalization error:

εg = 1
2〈(σ (ξ)− τ(ξ))2〉ξ . (3)

Following the standard statistical physics approach, we consider a Gibbs ensemble, which
is characterized by the partition functionZ = ∫

dµ ({Ji}) exp(−βH({J i})) with a formal
temperature 1/β which controls the thermal average of energy in the equilibrium. The
extensive energyH is a function of the training error, the standard choice beingH = Pεt .
Typical equilibrium properties are calculated from the associated quenched free energy
−(1/β)〈lnZ〉 =: fN where the average is performed over the random set of training examples.
The evaluation of〈lnZ〉, in general, requires the rather involved replica formalism. To obtain
first results we consider the simplifyinghigh-temperature limitβ → 0 [3,4]. The calculation
of equilibrium states is guided by minimization ofβf = α̃Kεg − s. Hereα̃ = βP/(NK) is
the rescaled number of examples, which we assume to beO(1) ands the entropy per degree
of freedom with order parameters held fixed. The latter is given by

s = 1
2 ln detC + irrelevant const. (4)

whereC is the 2K × 2K-matrix of all cross- and self-overlaps of student and teacher vectors.
Equation (4) is of quite general validity and can be derived by means of a saddle point integration
from the definition of the entropy. In [12] a simpler derivation is presented.

Here we assume the components of all examples to be independent random numbers with
mean zero and unit variance. Then, in the thermodynamic limitN → ∞ the generalization
error can be calculated analytically, if we choose the activation functiong(x) = erf(x/

√
2)

[14,15] which is very similar to the more popular hyperbolic tangent, so the basic features of
the model should not be altered:

εg = 1

6
+

1

Kπ

K∑
i,k=1

[
sin−1

(
Qik√

(1 +Qii)(1 +Qkk)

)
− 2 sin−1

(
Rik√

2(1 +Qii)

)]
. (5)

In the following, we first investigate the simplest caseK = 1, i.e. a network consisting of
one single unit, to show the basic principles. Then we will study networks with arbitraryK

and finally investigate the limitK →∞ of very large networks.
In theK = 1 case equations (4) and (5) read:

εg = 1

6
+

1

π
sin−1

(
Q

1 +Q

)
− 2

π
sin−1

(
R√

2(1 +Q)

)
(6)

s = 1
2 ln(Q− R2). (7)

Trying to minimizeα̃εg − s, we find thatεg remains of order one for arbitraryR, Q while s
becomes infinite forQ→∞, yieldingf →−∞. This means that in thermal equilibrium the
length of the student vector increases to infinity, while its overlap with the teacher becomes
irrelevant. Of course, this is not the desired result of training. The method of choice to avoid
this behaviour, is to ‘punish’ configurations with largeQ with an additional energy called
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Figure 1. Left panel:εg(α̃)andQ(α̃) (inset) as obtained analytically (solid curve) and the results of
Monte Carlo simulations (dots) forK = 1, λ̃ = 0.001 andβ = 0.2 (system sizeN = 100, averages
over five runs with 10 000 Monte Carlo steps each, 5000 of which were used for equilibration, 5000
for sampling measurements). We obtain two locally stable states with different student lengths for
someα̃, depending on the starting value of the student vector. We have used the same strategy as
in [18] to obtain the hysteresis behaviour. Right panel: appearance of the two phases in theλ̃–α̃
plane.

‘weight decay’. This is a method ofregularizationwhich is widely used, in practice, in order
to improve the generalization ability of feedforward neural networks [1]. So we introduce
H = Pεt + λNQ [16, 17, 19–22] and obtainβf = α̃εg + λ̃Q − s with λ̃ = βλ which has to
be minimized w.r.t.R andQ. In figure 1, left panel, we showεg as a function of the rescaled
number of examples,̃α for λ̃ = 0.001. For small̃α the network is in a state with largeQ (and
εg). Forα̃ > 12 a second state with smallQ and smallεg exists, which becomes globally stable
at α̃ ≈ 15. At α̃ ≈ 21.6 the state with largeQ even becomes locally unstable. We remark
that this phase transition is solely due to the differentiable nature of the activation function,
which causes the energy to depend on the length of the student vector, and does not occur in
the simple perceptron. It was also absent for the simpler linear unit withg(x) = x [19], where
the training error is more sensitive to a mismatchedQ than in the case of a bounded, saturating
transfer function.

This phase transition is sensitive to the size of the weight-decayλ̃: figure 1, right panel,
shows the appearance of the different phases in theλ̃–α̃ plane for the case of a single unit
(K = 1). The phase border between the phase of largeQ and the one where both states exist
shows a small̃λ-dependence and still exists in the limitλ̃ to zero. Here the phase with only
shortQ does not exist, this seperation diverges when approachingλ̃ = 0. The two phase
borders coincide for larger̃λ and all phase transitions disappear forλ̃ > λ̃crit. = 0.0068.

We have performed continuous Monte Carlo simulations of a Metropolis-like learning
process of the single unit. The results shown in figure 1 confirm our theoretical results.

In order to extend our analysis to networks withK > 2 we assume the network
configuration to besite-symmetricwith respect to the hidden units so the order parameters
fulfil the conditionsRij = Rδij + S(1− δij ) andQij = Qδij + C(1− δij ). This assumption
reflects the symmetry of the rule yet allows for specialization of the student, as student overlaps
with teacher vectors can yield different values fori = j andi 6= j . Now, generalization error
and entropy read:

εg = 1

6
+

1

π
sin−1

(
Q

1 +Q

)
+
K − 1

π

[
sin−1

(
C

1 +Q

)
− 2 sin−1

(
S√

2(1 +Q)

)]
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Figure 2. Left panel: εg(α̃) and1(α̃) (inset) forK = 2 andλ̃ = 0.001. Right panel:K = 3,
λ̃ = 0.001. Different starting values were used in numerical minimization to calculate as many
local minima of the free energy as possible.

− 2

π
sin−1

(
R√

2(1 +Q)

)
(8)

s = 1

2
ln[(K − 1)C +Q− (R + (K − 1)S)2] +

K − 1

2
ln[Q− C − (R − S)2]. (9)

The weight-decay term introduced for the single unit generalizes, naturally, toλ
∑K

i=1Qii ,
so the free energy becomesβf = α̃Kεg + λ̃KQ − s in a site-symmetric state. Numerical
minimization leads to the results shown in figure 2 forK = 2 and 3. In addition to the first-
order phase transition already observed at the single unit, which connects states with different
lengths of student vectors, we observe transitions between phases which are characterized by
the parameter1 := R − S indicating specialization features. As both transitions are due to
independent mechanisms, namely, on the one hand a change of student vectorlengthsand
on the other hand an alteration of theirdirections, specialized (1 > 0) and unspecialized
(1 = 0) phases can exist both in the large-Q configuration and in the small-Q regime.
Indeed forK > 3 first-order transitions between specialized and unspecialized phases can
be observed in both configurations. Additionally, there is a second-order phase transition
between the unspecialized largeQ phase and an anti-specialized phase (1 < 0) with largeQ
at α̃ ≈ 15. TheK = 2 system shows a second-order transition in the large-Q regime, while
an unspecialized configuration with smallQ cannot be observed. This difference in behaviour
results from the higher degree of symmetry in theK = 2 system, where the free energy is
invariant under exchange ofR andS. Consequently there is no physical difference between
specialized and anti-specialized configurations in theK = 2 system.

To study the behaviour of very large networks (K → ∞) scaling assumptions of the
order parameters have to be made. SupposingC to beO(1), the output of the student will be
O(
√
K) and thus on a different scale to the teacher output. So, we assume the hidden unit

overlaps to beO(1/K), writing C = Ĉ/(K − 1) and further introduceS = Ŝ/K, while1
andQ remainO(1). Inserting this and performing limK→∞ βf/K we find that the condition
∂f/∂S = 0 can be fulfilled only ifQ + Ĉ − (1 + Ŝ)2 is assumed to beO(1/K). So we
substituteĈ = C̃/K + (1+ Ŝ)2−Q before performing the limitK →∞. The corresponding
generalization error is shown in figure 3 as a function ofα̃. For smallα̃, the network is in an
unspecialized phase with largeQ. At α̃ ≈ 13 a locally stable, unspecialized configuration with
smallQ appears, which is globally stable betweenα̃ ≈ 22 andα̃ ≈ 88, where the specialized
smallQ configuration becomes globally stable. However, the unspecialized configuration
remains locally stable. Additionally, at̃α ≈ 20 the specialized largeQ phase appears, the
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Figure 3. εg(α̃) forK = ∞, λ̃ = 0.0001. All local minima of the free energy have been calculated
from the saddle point equations.

free energy of which is smaller than that of the unspecialized largeQ phase forα̃ > 22.5.
Anti-specialized configurations do not exist in the limitK → ∞. We expect them to be a
characteristic feature of systems with smallK > 3.

In summary, we have shown by means of statistical physics that learning an unknown
rule withouta priori knowledge in the form of normalized student vectors leads to a much
more complicated behaviour than learning with normalized students. The number of phases
in which the system can exist increases. Further, student lengths tend to infinity unless the
network weights are regularized by means of a proper weight decay.

Further investigations will extend research to finite temperatures by applying the replica
formalism and study the relevance of our results for practical training processes.
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